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In order to obtain useful solutions to various problems in boundary layer 
theory, attempts have been made to transform the partial differential 
equations to ordinary ones, Thus the so-called similar or self-similar 
solutions have been obtained. For the case of flow of an incompressible 
fluid without heat transfer the question of describing all self-similar 
solutions has been studied conclusively [ 1, 2 1, 

In the case of a compressible fluid the results of various studies to 
determine self-similar solutions (in the sense of the definition given 
below) for flow past a plate were described in 13 I. Certain self-similar 
solutions were found for a compressible boundary layer without heat 
transfer in 14 f , and including heat transfer in f 5 1. However, [ 5 ] did 
not exhaust all the self-similar solutions in the sense indicated. The 
present work enumerates. for the case of a compressible fluid including 
heat transfer, all self-similar solutions of the boundary layer equations. 
It is shown that no other self-similar solutions exist. 

The motion of a compressible fluid in the boundary layer is determined 
by the following system of equations [3 1 

where 

Here p, p, T and p are the pressure, density, temperature and coeffi- 
cient of viscosity, u and v are the velocity components along the x and 
y area, 8 is the stagnation temperature of the stream, E the mechanical 
equivalent of heat, c 

P 
the sDeCifiC heat at constant Pressure, K the 
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coefficient of thermal conductivity and CT the Prandtl number. Further- 
more PO, pO and TO denote the stagnation pressure, density and temperature 
of the external stream (that is, for y + CO), U the speed of the external 
stream and ,u,, the value of the coefficient of viscosity at T = TO. Hence- 
forth it is assumed that p/p, = T/TO. 

The value of the temperature at the wall is denoted by r (x). Then the 
boundary conditions for the system (1) will have the form 

u= V’O, 8 = r(x) at y = 0; 

u = U(x). 8 = TO at y= 00 

Similar to what was done in [4 I. we introduce new variables analogous 
to those of Dorodnitsyn: 

Ezr!P =ddr, 
” \P, 1 > 

W=i P dy 

0 po 

where a is a certain constant, the choice of which will be discussed 
later. We introduce the symbols 

and dimensionless quantities according to the formula 

q =7si, 6=(@$1) T,,, 7=(%+f) To 

where L is a certain characteristic length, k the adiabatic exponent and 
R the gas constant. We transform the system of equations (1) to the form 

Here the bars have been dropped from all quantities. All quantities 
considered henceforth are dimensionless. From this system three quanti- 
ties are to be determined subject to the following boundary conditions: 

a= v= 0. e = 7 (5, at q=O 

u= u(f). e= 0 at n=m 

Let [ and p be two arbitrary fixed points on the wall in the c.1 
plane. Also u(~‘.~L e(&q) and u@,W), e(kW) are the corresponding 
profiles of the quantities a and 8 at those points. The question arises 
whether it is possible to perform a similarity transformation of the n, 
u. and 8 axes (with, generally speaking, different coefficients of 
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expansion or contraction) such that the profiles n(t,rj> and e([,q) be- 
come precisely congruent to the profiles u(@.rl) and @(p,q). If this is 
possible, then 

u (5,T) = rfu (E*, fi ?), 0 (E, ‘1) = c g (5* fi rl) 

It is understood that the factors A, B. C depend on 5 for a 

Definition: If the indicated transformation is possible for 
e, then we say that the problem has a self-similar solution. 

Since 4” is fixed, taking X = B(()q and introducing instead 
the function 

cp(S) = f(X) dX s 
we obtain 

21 (E, 7;) = ‘-1 (Elf (-Q, 8 (6, ri) = c (E) g U-1 

The question is now investigated for which distributions of 

fixed 1s“. 

arbitrary 

of f(X) 

(5) 

velocity 
U(& and wall temperature r(e) the system (2) - (4) admits of solutions 
of the form (5). 

If7j = 0 then X = 0; if g + DO then X + 00. Therefore from the bound- 
ary conditions and the first of the relations (5) we find +‘(O> = 0. 
Moreover iY(& = A(() t$'{oo). There is no loss of generality in normalizing 
+‘(X) such that I$‘(-) = 1. Then A(& = U(&. Analogously, from the second 
of the relations (5) and the boundary conditions we obtain g(m) = 0. Also 

r (6) = C(f) g(0). Normalizing g(X) 
r (0. Now the relations (5) assume 

n (5, r,) = U (E) 9’ (-I), 

From the first of the relations 

such that g(0) = I, we obtain C(s) = 
the form 

0 (47 VI = T (F) 8 (a (6) 

(6) and equation (3) we obtain 

(7) 

Since Y(t,O> = 0 we conclude at once that $(O) = 0. 

Substituting relations (6) and (7) into equations (2) and (4), we ob- 
tain after some transformations 

In these epuations (;b and g are unknown functions of X satisfying the 
boundary conditions 

P (0) = P’ (01 = 0, 9’ &of = 1, s(O) = 1, q@J)=O 

and U, B. and r are functions of e. If similar solutions exist, this 
means that for proper choice of the function B(c) equation (8) becomes 
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an ordinary differential equation. 

In the present work all functions II and r are found for which such a 
choice of B(t) is possible. The cases u f 1 and o = 1 are investigated 
separately. In the first case the following theorem arises: 

Theoren 1. If o f 1. equation (8) reduces to an ordinary differential 
equation only if simultaneously II= const and r = const. Then the func- 
tion B(c) is determined uniquely to within a constant multiplier, 

Proof. We set LL = 1 In our equations; that is, 6 = 0. If II = const 
then equations (8) take the form 

In order that the first be an ordinary differential equation, it is 
necessary that the expression UB’fBj should not depend on 6 that is 
UB’fB3 = const. Furthermore, all coefficients in the second equation must 
be constants. This means that #2/r = const and consequently 7 = const 
and r’ = 0. We now show how to find the function B(c). BY multiplying it 
by a constant factor we can change the quantity lJB’IB3. Thus we will 
choose B(c) such that ~B’/B’ = -2. Hence it is easy to obtain 

The system of equations under consideration takes the form 

‘p’fl + 2 p’p” = 0, g” + 2a gg’ I= (1 - 0): (9’2)” 

This system was considered in detail in 13 1. 

It remains to show that equation (8) does not reduce to an ordinary 
differential equation of U # const. Now in this case dividing the first 

of equations (8) by at we obtain 

This is an ordinary differential equation if 

7 I- const, (1 - z/Z) (z&- 1) = ccnst, I?2 (1; C’) = const (10) 

After multiplication of the second of equations (8) by (1 - 3)/U 
we find 

Hence we conclude that 
nzliz (1 - W) 

Ci f 
= consl 

(fm 
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Comparing with (108) we obtain U2 = const, which contradicts the 
assumption. Thus the theorem is proved. 

Now we consider the case when u = 1. In the proof of Theorem 1 it was 
shown that under the condition Of 0 in order for the first of equations 
(8) and hence of (Sa) to reduce to an ordinary differential equation it 
was necessary that r = const. 

1. This means that in order for the system (8) to be a system of 
ordinary differential equations it is necessary that one of the condi- 
tions Cl = const or t = const be satisfied. 

We consider first the case when U= const. assuming again a = 1. 
6 = 0 and G = 1 we write the system (8) as 

9, I,, - ‘Tpp” = 0 

2Qg’ - $_ f &TCp’ zcz g” B2= ’ 4 
&V’ 

O,=--_ 

u > 
Hence it follows that 

V _?_ =: (45 + Lib) K = const 
B3 7 ,r 

Setting Jb Ub = c and (4 (5: + Ub)r ‘jr = 4n, we find that to within 
constant multiplier r = (t + c)” and the system of equations assumes 
form 

a 
the 

p”’ + 2yrp” = 0, g” + 2qg’ + 4np’g = 0 ($1) 

The first of these equations is the well-known Blasius equation, whose 
solution is tabulated. The second is linear in g and can be easily 
solved with sufficient accuracy, for example by Galerkin’s method. We 
have proved the proposition. 

2. If u = 1 and U = const, equations (8) reduce to ordinary ones only 
when 7 = (4‘ + c)“. Then the system assumes the form (11). 

Remark. If ~7 = 1 and U = 
g 

const, equations (8) reduce to ordinary ones 
also for r = Ae . However, it is.then necessary that B = const. and the 
first of equations (8) assumes the form c$‘-*‘.= 0. Rut the solutions of 
this equation do not satisfy the boundary conditions of the problem. 

We now consider the latter case: CT = 1. T = const. Then the system (8) 
assumes the form 

We investigate for what l/(g) these equations become ordinary ones. 
This obviously occurs only when simultaneously 

(1 - lJ2) (~ - , = eonst, 11 B2 fl - US) = const 
U’ (1 - lJ2)” 

(13) 
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Differentiating the second relation, we readily find 

B’ 1 U” -=_ 1 _-. 2(6-1)UU' 
B 2 U' I-- u2 1 

We substitute this expression into the first of equations (13), also 
denoting the constant on the right side by F1 Then 

_g.g=l- p-1 - (8 - 1) u2 

I- u2 (14) 

We recall that 6 = k&x - l)/(k - 1) and that a can be chosen arbi- 
trarily. We first choose a so that 8 - 1 = frl. In this case the equation 
acquires the form: Vv”- 2(1 - p”)U”. It is easily seen that all solu- 
tions of this equation are expressed as powers or exponentials as 
follows: 

CT = (a6 + b)n for $+2, U = aebE for $=2 (13) 

Here also in the first case p = 2n/(n + 1). Now B(c) can be found from 
the second of the equations (13). Without loss of generality H can be 
normalized such that 

for 
B2G---? =* f-- 

U’ (1 -US)” 

Here the sign on the right side agrees with the corresponding sign in 
the relation: sign v’ = 2 sign j% In the case of a plus sign the system 
(12) tahes the form 

9” + (P(P” = f (9,‘” -VI, g” + ‘pg’ = 0 
( J 

B= y (1 - U2)’ J @ ) 

and in the case of a minus sign 

- $I’+ cp$l = b (9’8 - rg), g” - tpg’-_ 0 (B4+42)1~@) 

Now if a is chosen such that 6 - 1 = fri. then in the e.9 plane (where 
the variable C$ depends on a) equations (8) can be reduced to ordinary 
ones if U(& is expressed in the form (15). However. if a is chosen 
otherwise, in order to find those ti@ for which equations (8) become 
ordinary ones it is necessary to solve equation (14). Recuding its order 
we obtain 

dU K 
UY -= 

4 
‘&-~= ? (16) 

u+s-2 ( 9 9 
(1 - U=) 2 

where R is some constant. Hence it is possible to find the reXation bet- 
ween U and 5 simply by integration. We notice, among other things, that 
for S - 1 = F1 this equation takes the form dU/de = Kg. all 8OlUtiOnS 

of which are given by equation (15). 

If a is chosen such that 6 - 1 = ,@-l then the rule of variation of 
UC& for which self-similar solutions are possible is expressed most 
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simply in the appropriate f,W plane. But if a is chosen otherwise, then 
the variable 5 is different and the law for V(f) changes. Nevertheless. 
wahtever a may be, upon returning to the variables x, y we find always 
the same rule for V(X). What is indicated above permits formulation of 
the proposition: 

3. Ifo= 1 and r = const, then equations (8) reduce to ordinary ones 
only when the law of distribution of the velocity V(C$) is expressed, for 
suitable choice of a, in the form (15). 

Remark. In investigating the system (12) we put 

assuming that this quantity was different from zero. However, if it is 
set equal to zero the second of equations (12) immediately gives 

,, 
g = 0. The solution of this equation is a linear function, which cannot 
satisfy the boundary conditions for g(X). So in this case a self-similar 
solution clearly does not exist. We note that in the absence of heat 
transfer the assumption that VB’/V’B - 1= 0 corresponds to a contract- 
ing duct in the 5,s plane and leads to a self-similar solution 14 I. 

The proofs of statements 1, 2 and 3 can be combined into the follow- 
ing theorem. 

Theorem 2. In order that equations (81 be ordinary differential 
equations when u = 1, it is necessary and sufficient that one of the 

following conditions 

1. U = const, 

Here the function 
cative constant. 

For these systems 
dimensional boundary 

be realized: 

7 = A (E + c)” 2. ‘c = const, U = (at + b)” 

3.7=coust, u = web< 
B(c) is determined uniquely to within a mult iPl i- 

it is still necessary to solve each time a one- 
value problem on the half axis. In the present work 

the questions have not been considered of existence and uniqueness of 
the solutions of the indicated boundary value problems. These problems 
are very complicated and have not been investigated very far. In 17 I, 
for example, it is shown that in the case of an incompressible fluid 
without heat transfer (that is, rg = 1) the equation $‘y..+ &6”= 

/3 (qs2 - 1) for B < 0 has infinitely many solutions satisfying all the 
boundary conditions. In this case from all the solutions a certain one 
is distinguished which has a particular form of growth at infinity. 

The problem has been solved above of finding all self-similar solu- 
tions of the system (2) - (4) in the c,W plane in the sense of the 
accepted definition. As is readily understood, solutions that are self- 
similar in this sense will not, generally speaking, be self-similar 
solutions of the system (1) in the x, y plane in the analogous sense. 
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